發(fā)布時(shí)間: 2017-11-28 點(diǎn)擊次數(shù): 2096次
車(chē)牌識(shí)別系統(tǒng)是一項(xiàng)利用車(chē)輛的動(dòng)態(tài)視頻或靜態(tài)圖像進(jìn)行牌照號(hào)碼、牌照顏色自動(dòng)識(shí)別的模式識(shí)別技術(shù)。其硬件基礎(chǔ)一般包括觸發(fā)設(shè)備(監(jiān)測(cè)車(chē)輛是否進(jìn)入視野)、攝像設(shè)備、照明設(shè)備、圖像采集設(shè)備、識(shí)別車(chē)牌號(hào)碼的處理機(jī)(如計(jì)算機(jī))等,其軟件核心包括車(chē)牌定位算法、車(chē)牌字符分割算法和光學(xué)字符識(shí)別算法等。某些車(chē)牌識(shí)別系統(tǒng)還具有通過(guò)視頻圖像判斷是否有車(chē)的功能稱(chēng)之為視頻車(chē)輛檢測(cè)。一個(gè)完整的車(chē)牌識(shí)別系統(tǒng)應(yīng)包括車(chē)輛檢測(cè)、圖像采集、車(chē)牌識(shí)別等幾部分(如圖1所示)。當(dāng)車(chē)輛檢測(cè)部分檢測(cè)到車(chē)輛到達(dá)時(shí)觸發(fā)圖像采集單元,采集當(dāng)前的視頻圖像。車(chē)牌識(shí)別單元對(duì)圖像進(jìn)行處理,定位出牌照位置,再將牌照中的字符分割出來(lái)進(jìn)行識(shí)別,然后組成牌照號(hào)碼輸出。 (1)車(chē)輛檢測(cè)
車(chē)輛檢測(cè)可以采用埋地線圈檢測(cè)、紅外檢測(cè)、雷達(dá)檢測(cè)、視頻檢測(cè)等多種方式。采用視頻檢測(cè)可以避免破壞路面、不必附加外部檢測(cè)設(shè)備、不需矯正觸發(fā)位置、節(jié)省開(kāi)支,而且更適合移動(dòng)式、便攜式應(yīng)用的要求。
車(chē)牌識(shí)別系統(tǒng)進(jìn)行視頻車(chē)輛檢測(cè),需要具備很高的處理速度并采用的算法,在基本不丟幀的情況下實(shí)現(xiàn)圖像采集、處理。若處理速度慢,則導(dǎo)致丟幀,使系統(tǒng)無(wú)法檢測(cè)到行駛速度較快的車(chē)輛,同時(shí)也難以保證在有利于識(shí)別的位置開(kāi)始識(shí)別處理,影響系統(tǒng)識(shí)別率。因此,將視頻車(chē)輛檢測(cè)與牌照自動(dòng)識(shí)別相結(jié)合具備一定的技術(shù)難度。
(2)牌照號(hào)碼、顏色識(shí)別
為了進(jìn)行車(chē)牌識(shí)別,需要以下幾個(gè)基本的步驟:
1) 牌照定位,定位圖片中的牌照位置;
2) 牌照字符分割,把牌照中的字符分割出來(lái);
3) 牌照字符識(shí)別,把分割好的字符進(jìn)行識(shí)別,zui終組成牌照號(hào)碼。
車(chē)牌識(shí)別系統(tǒng)識(shí)別過(guò)程中,牌照顏色的識(shí)別依據(jù)算法不同,可能在上述不同步驟實(shí)現(xiàn),通常與車(chē)牌識(shí)別互相配合、互相驗(yàn)證。
1) 牌照定位
自然環(huán)境下,汽車(chē)圖像背景復(fù)雜、光照不均勻,如何在自然背景中準(zhǔn)確地確定牌照區(qū)域是整個(gè)識(shí)別過(guò)程的關(guān)鍵。首先對(duì)采集到的視頻圖像進(jìn)行大范圍相關(guān)搜索,找到符合汽車(chē)牌照特征的若干區(qū)域作為候選區(qū),然后對(duì)這些侯選區(qū)域做進(jìn)一步分析、評(píng)判,zui后選定一個(gè)*的區(qū)域作為牌照區(qū)域,并將其從圖象中分離出來(lái)。
2) 牌照字符分割
完成牌照區(qū)域的定位后,再將牌照區(qū)域分割成單個(gè)字符,然后進(jìn)行識(shí)別。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符間或字符內(nèi)的間隙處取得局部zui小值的附近,并且這個(gè)位置應(yīng)滿(mǎn)足牌照的字符書(shū)寫(xiě)格式、字符、尺寸限制和一些其他條件。利用垂直投影法對(duì)復(fù)雜環(huán)境下的汽車(chē)圖像中的字符分割有較好的效果。
3) 牌照字符識(shí)別
字符識(shí)別方法目前主要有基于模板匹配算法和基于人工神經(jīng)網(wǎng)絡(luò)算法?;谀0迤ヅ渌惴ㄊ紫葘⒎指詈蟮淖址祷⑵涑叽绱笮】s放為字符數(shù)據(jù)庫(kù)中模板的大小,然后與所有的模板進(jìn)行匹配,選擇*匹配作為結(jié)果。基于人工神經(jīng)網(wǎng)絡(luò)的算法有兩種:一種是先對(duì)字符進(jìn)行特征提取,然后用所獲得特征來(lái)訓(xùn)練神經(jīng)網(wǎng)絡(luò)分配器;另一種方法是直接把圖像輸入網(wǎng)絡(luò),由網(wǎng)絡(luò)自動(dòng)實(shí)現(xiàn)特征提取直至識(shí)別出結(jié)果。